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a b s t r a c t

When using the time explicit material point method to simulate interaction of materials
accompanied by large deformations and fragmentation, one often encounters a numerical
instability caused by small node mass, because acceleration on a mesh node is obtained by
dividing the total force on the node by the mass of the node. When the material points are
in the far sides of the cells containing the node, typically happening near material inter-
faces, the node mass can be very small leading to artificially large acceleration and then
numerical instability. For the case of small material deformations, this instability is typi-
cally avoided by placing the material points away from cell boundaries. For cases with large
deformations, with the exception of initial conditions, there is no control on locations of
the material points. The instability caused by small mass nodes is often encountered. To
avoid this instability tiny time steps are usually required in a numerical calculation.

In this work, we present a numerical algorithm to treat this instability. We show that this
algorithm satisfies mass and momentum conservation laws. The error in energy conserva-
tion is proportional to the second order of the time step, consistent with the explicit mate-
rial point method. Numerical implementation of the algorithm is described. Numerical
examples show effectiveness of the algorithm.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

One of the significant advantages of the material point method (MPM) is its capability of tracking material interfaces.
However, direct application of the material point method often leads to instability or introduces significant noise in the cal-
culation because of the small mass on nodes near the material interface. Numerically, this instability is a consequence of the
time lag of the stress in a time explicit calculation. Although this instability can in principle be eliminated in a time implicit
calculation, an implicit material point method capable of considering interaction of materials with significantly different
constitutive relations is yet to be developed, especially when the material point method is used in combination with an Eule-
rian method to study multiphase flows or multimaterial interactions. Despite many disadvantages, time explicit methods
may still be an effective choice in cases with complicated constitutive relations and with material speeds comparable to
the speed of sound of the material. The main objective of the current paper is to obtain a numerical algorithm to overcome
the instability caused by small node mass.

Loosely speaking, in a numerical calculation of an elastic problem using a mesh based method, the elastic body is approx-
imated by a network of springs and mass points at mesh nodes. The smallest elastic wave time scale in the discretized sys-
tem is of order

ffiffiffiffiffiffiffiffiffiffi
m=K

p
, where m is the mass on a node and K is the spring constant. The mass m and the spring constant K are
. All rights reserved.
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functions of the mesh or computational cells used to approximate the elastic body. To explain the unique difficulties of the
material point method, in this introduction we assume the aspect ratios (or Dy/Dx,Dz/Dx) of mesh cells are of order 1. This
assumption is not needed in the rest of the discussion in the present paper. With this assumption, the mass m is of order
q(Dx)3, where q is the density of the elastic body. In a Lagrangian method the mass m does not vary significantly during
the calculation, and the spring constant is of order EDx, where E is the Young’s modulus. Therefore the time scaleffiffiffiffiffiffiffiffiffiffi

m=K
p

¼ Dx=c does not vary significantly during the calculation, where c is the speed of sound in the elastic body. In an Eule-
rian method or an arbitrary Lagrangian Eulerian (ALE) method, stresses are advected together with the mass of the material,
therefore the spring constant is proportional to the node mass and the time scale

ffiffiffiffiffiffiffiffiffiffi
m=K

p
¼ Dx=c is also kept close to a con-

stant. In both of these cases, the elastic wave time scales of the discretized system do not vary significantly during the
calculation.

In the material point method, however, while the spring constant K is still of order EDx, the node mass is calculated as the
sum of the products of the shape function and the mass of the material point. When all material points are far away from a
mesh node, the shape function approaches zero as does the node mass. Therefore the lower limit of the time scale

ffiffiffiffiffiffiffiffiffiffi
m=K

p
is

zero in the material point method. To ensure numerical stability, in a time explicit calculation the time step Dt has to be a
fraction of the smallest elastic wave time scale in the system. Therefore if a proper algorithm is not used for these nodes, the
time step could become too small for an time explicit scheme to make meaningful progress, or the calculation could become
unstable. This numerical instability often happens near a material interface, when a material point enters a cell that does not
contain particles in the previous time step. This instability is related to the cell crossing instability studied in [1], but the
causes of the instabilities are different. The instability discussed in the present paper is caused by small mass on the nodes;
while the instability studied in [1] is caused by the discontinuity in the gradients of the shape functions in the material point
method.

We also note that the reduction of the time step because of the small mass nodes does not increase the accuracy of the
calculation, because the shortest period or highest frequency waves resolved in a calculation are determined by the largest
value of Dx/c, not the smallest one, for a given mesh. The reduction of the time step because of the small mass nodes is purely
to satisfy the stability requirement without a benefit to the accuracy of the calculation.

The main objective of the present paper is to introduce an algorithm to overcome this difficulty in the material point
method by restoring the smallest time scale to Dx/c in the discretized system, so that the required time step for stability
is not reduced.

Our algorithm is combined with the method [2] of satisfying the continuity constraint developed for the coupled calcu-
lation using the ALE method and the material point method. Such a coupled calculation is especially advantageous in prob-
lems of fluid-structure interactions. The fluid phase can be calculated using the ALE method, and the solid structure can be
calculated using the material point method. The interactions of the fluid and solid phases are computed using the recently
developed averaged equations for continuous multiphase flows [3]. The method of satisfying the continuity constraint in the
coupled ALE and MPM calculation requires the use of the Lagrangian velocity to update stresses, which is a preferred method
of calculating stresses from the point of view of numerical stability [4] in a time explicit calculation.

The effectiveness of this algorithm for small mass nodes is demonstrated by several examples in the last section of this
paper. The numerical results of these examples are compared to analytical solutions or experiment data. Significant improve-
ments in the time step size are confirmed.

To facilitate our discussion and to further illustrate the issues discussed in the present paper, we list basic steps of the
material point method in the following section without derivation. These steps are not new; their derivation can be found
in many published papers [2,5,6]. We include these steps in the present paper because they are useful in the discussion of the
introduced numerical algorithm.

2. Material point method for multiphase systems

The governing equations for multimaterial interactions used in the present paper are obtained from the ensemble
phase averaging technique [3]. For phase k material, let uk be the average velocity, hk the volume fraction, q0

k the aver-
age material density, rk the average stress tensor, bk the specific (per unit mass) body force applied by a source exter-
nal to the system, and fk the phase interaction force at location x and time t. The averaged momentum equation can
be written as
hkq0
k

duk

dt
¼ r � ½hkðrk þ PIÞ� � hkrP þ hkq0

kbk þ hkf k; ð1Þ
after setting the auxiliary stress rAk = �PI in Eq. (15) of [3], where P is an auxiliary pressure in the system, and I is the identity
tensor. Except for flows in porous media [7,8], the choice of the auxiliary stress rAk = �PI provides many conveniences in
modeling multiphase flows, especially disperse multiphase flows. Although the pressure effect in the first and the second
terms on the right hand side can be simplified as Prhk, the momentum equation in form (1) is especially convenient for
its numerical implementation in the material point method, as shown in Section 6.2.

By introducing macroscopic density qk ¼ hkq0
k , stress sk = rk + PI, and force density qkGk = qkbk � hkrP + hk fk, we can sim-

plify (1) as
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q
du
dt
¼ q

@u
@t
þ u � ru

� �
¼ r � ðhsÞ þ qG; ð2Þ
where we have omitted subscript k denoting the phases, since our discussion before Section 6 is not related to phase inter-
actions. We will restore these subscripts in that section.

In the material point method, we use both an Eulerian mesh and Lagrangian material points. There is a shape function Si

for each mesh node i. Each material point p is assigned a mass mp. The momentum equation is discretized as [2]
XN

j¼1

mij
duj

dt
� �ðhs;rSiÞ þ

XN

j¼1

mijGj þ
Z
@X

hs � nSiðxÞdS; ð3Þ
where the subscripts denote node number, N is the total number of nodes, Si is the shape function of node i, (hs, rSi) is the
inner product of hs andrSi, oX is the boundary of the computational domain X, and mij denotes the ith row and the jth col-
umn element of the mass matrix calculated as
mij ¼
Z

X
qSiðxÞSjðxÞdv �

XNp

p¼1

mpSiðxpðtÞÞSjðxpðtÞÞ: ð4Þ
In the material point method, the inner product (hs,rSi) is approximated as
ðhs;rSiÞ �
XNp

p¼1

vpsprSiðxpÞ; ð5Þ
where vp is the volume associated with the material point p, sp is the stress s evaluated at the location xp of the material
point, Si(xp) is the shape function of node i at the material point, and Np is the total number of material points.

Eq. (3) is a system of coupled linear equations for duj/dt. In an explicit material point method, to avoid solving this system
of coupled equations, we note that mij is non-zero only for the nodes (j’s) that are within the support (non-zero region) of the
shape function Si. Since these nodes are in the vicinity of node i, duj/dt can be approximated by dui/dt with a spatial discret-
ization error of O[(Dx)d], where d = 1 if function du(x, t)/dt is continuous in space or node i is a boundary node; and d = 2 if
du(x, t)/dt is smooth (first order differentiable) in space. Similarly, with the same order error, we can also approximate the
body force Gj by Gi. With this approximation, the linear equations can be decoupled and be written as
mi
dui

dt
� �ðhs;rSiÞ þmiGi þ

Z
@X

hs � nSiðxÞdS; ð6Þ
where
mi ¼
XN

j¼1

mij ¼
Z

X
qSidv ¼

XNp

p¼1

mpSiðxpÞ: ð7Þ
This approximation is equivalent to approximating the matrix elements mij, (i,j = 1,2, . . . ,N), by a diagonal matrix in which
the diagonal elements are the sum of the elements in the corresponding rows of the original matrix,
mij � midij: ð8Þ
Therefore this approximation is called the lumped mass matrix approximation and is known to cause artificial energy dis-
sipation of order (Dx)2 [9].

With the acceleration dui/dt calculated from either (3) or (6) the updated Lagrangian velocity on a node is calculated as
uL
i ¼ un

i þ
dui

dt
Dt; ð9Þ
where superscript L indicates a Lagrangian step, superscript n indicates the value at time step n and Dt is the time step. The
change uL

i � un
i of velocity is interpolated to material points to update the velocity at a material point,
unþ1
p ¼ un

p þ
XN

i¼1

uL
i � un

i

� �
Si xn

p

� �
: ð10Þ
To prevent numerical diffusion, we interpolate the difference ðuL
i � un

i Þ to the material points, not the value uL
i . The value of

the shape function is evaluated at time level n, because this is a Lagrangian step. In this step the coordinate system moves
and deforms with the material.

The location xp of material point p is updated using the average of the Lagrangian velocity uL
i and the velocity un

i at the
beginning of the time step, interpolated to the material point,
xnþ1
p ¼ xn

p þ
1
2

Dt
XN

i¼1

uL
i þ un

i

� �
Si xn

p

� �
: ð11Þ
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To update the node velocity for time level n + 1, we use the following relation [2] between quantities on nodes and on mate-
rial points. For any given time t,
XN

j¼1

mijðtÞujðtÞ �
XNp

p¼1

mpupðtÞSi xpðtÞ
� �

: ð12Þ
Eq. (12) is a set of coupled equations for uj at the nodes. Again because of the local support of the shape functions, by approx-
imating uj with ui, we have
miui �
XNp

p¼1

mpupSiðxpÞ: ð13Þ
The volume Vpi of the material represented by the material points at node i can be calculated as
Vpi �
XNp

p¼1

vpSiðxpÞ: ð14Þ
The material density q0
i on node i is calculated as the mass mi divided by the volume Vpi of the material at the node,
q0
i �

miPNp
p¼1vpSiðxpÞ

: ð15Þ
With the velocity at the mesh node updated using (12) or (13) and the material density updated using (15), for single phase
systems, one can then use the constitutive relation or equation of state to calculate the stress of the material at material
points. Once the stress is calculated, one can repeat the procedures listed above as the next time step.

For multiphase or multimaterial systems, we need to enforce the continuity constraint: the sum of the volume fractions
over all phases equals unity. The volume fraction of a material represented by material points is calculated as
hi ¼
Vpi

Vi
� 1

Vi

XNp

p¼1

vpSiðxpÞ; ð16Þ
where
Vi ¼
Z

X
Si dv ; ð17Þ
is the volume associated with node i. The difference between this volume and the node volume in a finite volume method is
of order (Dx)2 for meshes without sudden change in cell sizes. Therefore for a reasonable mesh the difference can be
neglected [2].

To prevent error accumulations, the continuity constraint should not be enforced directly, and an alternative, but equiv-
alent constraint should be used [2]. The combination of the alternative method with the algorithm for small mass nodes
introduced in the present paper is described in Section 6. For single phase systems, the material point method described
above satisfies the alternative constraint automatically to the second order of the time step.

3. Distribution coefficients for small mass nodes

In the material point method, for node ‘, if the material points are located at the far sides of the cells with ‘ as a
node, the shape function S‘(xp) and the masses m‘j and m‘ calculated using (4) and (7) are small, while the gradient of
the shape function and therefore the force (hs,rSi) in (3) or (6) are not necessarily small. If these equations are used
directly to calculate du‘/dt, large change in the value of u‘ can lead to instability in a time explicit calculation. This
instability happens frequently in a region with a large gradient of the volume fraction. Typically this region is near
a material interface. In such cases, Eqs. (3) and (6) are in fact a statement of a boundary condition on the interface,
because this is how the traction continuity condition is derived on a material interface. In the region of large gradient
of volume fraction, the error in the material point method is of order Dx. Within this order of error, we can transfer a
part of the force (hs,rS‘) acting on node ‘ that has a small mass to neighbor nodes where the mass is not small. We
only need to transfer force (hs,rS‘) on the right hand sides of (3) and (6), not the other terms, because the other terms
are proportional to the node volume fraction, which is proportional to the node masses. For this transfer, we introduce
a distribution coefficient C‘i(P 0) that transfers the force from node ‘ to node i and write the right hand sides of (3)
and (6) as
f i ¼ �
XN

‘¼1

C‘ iðhs;rS‘Þ þ
XN

j¼1

mijGj þ
Z
@X

hs � nSiðxÞdS: ð18Þ
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In this way some of the force acting on node ‘ is transferred to node i. If the mass on node i is small, the distribution coef-
ficient C‘i should be small to reduce the acceleration of the node. If node ‘ has sufficient mass, the force transfer should not
take place, or the distribution coefficient should be set to d‘i(d‘i = 1, if ‘ = i, and d‘i = 0, otherwise).

The distribution coefficient introduced above provides a way to control the numerical values of the accelerations on the
small mass nodes. We have so far only discussed general requirements for the distribution coefficients. Their specification is
found by studying their effects on conservation laws and time scales in the discretized system.

4. Conservation laws

Since the force distribution coefficient introduced above does not affect the way the node mass is calculated, the mass
conservation properties are not altered from the original material point method, which can be shown to satisfy the mass
conservation law by summing (7) over i, and noting that mass of the material points are fixed in the calculation without
a phase change.

4.1. Conservation of momentum

In a system without the boundary force, replacing the right hand side of (3) with (18), the momentum change at node i
from tn to tn+1 can be calculated as
XN

j¼1

mn
ijDuj ¼ � hs;

XN

‘¼1

C‘ irS‘

 !
Dt þ

XN

j¼1

mn
ijGjDt; ð19Þ
where Du = uL � un, and Dt = tn+1 � tn is the time step. Multiplying both sides of (10) by mp, and then using (7), we find
XNp

p¼1

mpunþ1
p ¼

XNp

p¼1

mpun
p þ

XN

i¼1

mn
i Dun

i : ð20Þ
The first term on the right hand side of (20) and the left hand side are the values of the total momentum before and after the
time advancement, based on the material points. By summing (12) or (13) over all nodes, we can find that the total momen-
tum calculated based on the material points is exactly the same as the total momentum calculated based on nodes regardless
of whether the lumped mass matrix approximation is used.

Summing (19) over all nodes, noting mn
ij ¼ mn

ji, we find
XN

i¼1

mn
i Dun

i ¼ � hs;
XN

‘¼1

rS‘
XN

i¼1

C‘ i

 !
Dt þ

XN

i¼1

XN

j¼1

mn
ijGjDt: ð21Þ
Substituting (21) into (20), noting mn
ij ¼ mn

ji and using (7), we find
XNp

p¼1

mpunþ1
p ¼

XNp

p¼1

mpun
p þ

XN

j¼1

mn
j GjDt � hs;

XN

‘¼1

rS‘
XN

i¼1

C‘ i

 !
Dt: ð22Þ
According to the definition of G in (2),
PN

j¼1mn
j Gj is the force external to the material acting on node j. The second term on the

right hand side of (22) is the total impulse from the force external to the material. If the sum of the force distribution coef-
ficients over the second index i;

PN
i¼1C‘ i, is a constant independent of node ‘, the last term in (22) vanishes, because the sum

of the shape function gradients is zero. The change in the total momentum is then caused by external force only. As men-
tioned in the last section, if node ‘ has sufficient mass, C‘ i = d‘ i, and

PN
i¼1C‘ i ¼ 1. In order for

PN
i¼1C‘ i to be a constant inde-

pendent of ‘, we must have
XN

i¼1

C‘ i ¼ 1 ð23Þ
for all nodes, including the nodes with small masses. According to (22), if (23) is satisfied, the conservation of momentum is
preserved with the force distribution coefficients.

4.2. Energy conservation

The total kinetic energy based on material points at time step n can be calculated as
Kn
p ¼

1
2

XNp

p¼1

mp un
p

� �2
: ð24Þ
The difference of the kinetic energy during a time advancement is then
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Knþ1
p � Kn

p ¼
1
2

XNp

p¼1

mp ðunþ1
p Þ2 � ðun

pÞ
2

h i
¼ 1

2

XNp

p¼1

mp unþ1
p þ un

p

� �
� unþ1

p � un
p

� �
¼
XNp

p¼1

mp un
p þ

1
2

Dun
p

� �
� Dun

p

¼
XN

j¼1

XNp

p¼1

mpun
pSjðxn

pÞDun
j þ

1
2

XN

j¼1

XN

i¼1

mn
ijDun

i � Dun
j ; ð25Þ
where Dun
p ¼ unþ1

p � un
p and Dun

i ¼ uL
i � un

i . The last step of (25) is a result of (10) and (4). Using (12) and noting mij = mji, we
have
Knþ1
p � Kn

p ¼
XN

j¼1

XN

i¼1

mn
ji un

i þ
1
2

Dun
i

� �
� Dun

j ¼
XN

i¼1

uL
i þ un

i

2
�
XN

j¼1

mn
ijDun

j : ð26Þ
Energy transport in a multiphase system is affected by phase interactions not only through exchange forces but also through
related stresses. It is beyond the scope of this paper to study energy transfer between phases. The numerical properties of
energy conservation with the force distribution coefficients can be understood by considering an elastic body in a vacuum
subject to a potential body force b, such as gravity. In this case, the auxiliary pressure can be set to zero, resulting in s = r and
G = b. Using (4), (5) and (19), after exchanging the orders of summations, we have
Knþ1
p � Kn

p ¼ �
XNp

p¼1

vprp : rûnþ1=2ðxn
pÞDt þ

XNp

p¼1

mp

XN

j¼1

bjSjðxpÞ �
XN

i¼1

uL
i þ un

i

2
SiðxpÞ

" #
Dt; ð27Þ
where rûnþ1=2 is the half time velocity gradient calculated as
rûnþ1=2ðxn
pÞ ¼

XN

‘¼1

ûL
‘ þ ûn

‘

2
rS‘ðxn

pÞ; ð28Þ
with the velocity û‘ defined by
ûL
‘ ¼

XN

i¼1

C‘ iuL
i ; ûn

‘ ¼
XN

i¼1

C‘ iun
i : ð29Þ
For an elastic material, we have r = q0ou/@e, where u is the specific (per unit mass) elastic potential energy, q0 is the micro-
scopic density, and e is the strain of the material. The total elastic potential energy Up in the system can be approximately
calculated using material points as
Up ¼
XNp

p¼1

mpup: ð30Þ
Differentiating (30) with respect to time and noting r = q0@u/@e for an elastic material and vp ¼ mp=q0
p , we find
Unþ1
p � Un

p

� �
¼
XNp

p¼1

vprp : _epDt þ O½ðDtÞ2�: ð31Þ
Noting that the stress tensor rp is symmetric, comparing (27) with (31) we find that, if the strain rate _ep is calculated as the
symmetric part of rûnþ1=2ðxpÞ using (28), we have
Knþ1
p þ Unþ1

p ¼ Kn
p þ Un

p þ
XNp

p¼1

mpbp � unþ1=2
p Dt þ O½ðDtÞ2�; ð32Þ
where
bp ¼
XN

j¼1

bjSjðxpÞ; ð33Þ
is the specific (per unit mass) body force at the location xp of material point p, and
unþ1=2
p ¼

XN

‘¼1

uL
‘ þ un

‘

2
S‘ðxpÞ; ð34Þ
is the half time velocity at the location xp of the material point. The third term on the right hand side of (32) represents the
work done by the body force.

If the body force mpbp is the gradient of a potential /, that is mp bp = �r/(xp), then the change in the potential for each
material point can be calculated as /ðxnþ1

p Þ � /ðxn
pÞ ¼ �mpbpðxnþ1

p � xn
pÞ. Therefore when the displacement of the material

point is calculated as xnþ1
p � xn

p ¼ unþ1=2
p Dt, relation (32) implies that conservation of the total energy, including this force
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potential, is within an error of order (Dt)2. In other words, to ensure the error in total energy conservation is within the order
of the time step squared, the strain rate or the velocity gradient used for stress calculation is required to be calculated using
the node velocity weighted by the force distribution coefficients as in (28) and (29), and displacements of the material points
are required to be calculated using the unweighted velocity.

We note that the second order error proportional to the time step Dt comes from (31). If the volume vp, the stress rp and
the strain rate are evaluated at the half time between tn and tn+1, the error can be reduced to O[(Dt)3]. This will require an
implicit material point method. In an explicit material point method, we can update the stress before or after the Lagrangian
velocity is calculated. If the stress is updated before the Lagrangian velocity is calculated, then the strain rate has to be cal-
culated using the velocity ûn. This is equivalent to approximating ûL with ûn in (28). For convenience in computing material
interactions as discussed in Section 6, we choose to update stress after the Lagrangian velocity is calculated. This way of
updating stress has been shown to have better stability properties [10,11]. In this way, the calculated stress is used in the
next time step. To prevent further time lag in stress calculation, the strain rate used to calculate the stress is computed from
Lagrangian velocity ûL alone. This is equivalent to replacing ûn with ûL in (28). This way of calculating stress is different from
an implicit method, because such calculated stress is used at the next time step, instead of iterating it in the current time
step as in an implicit method.

4.3. Energy dissipation due to lump sum of the mass matrix

In most implementations of the material point method, the lumped mass matrix approximation is used to avoid solving
coupled equations. We show that the use of distribution coefficients with this approximation does not cause energy dissi-
pation in addition to that which is originally associated with the approximation.

We note that Dun
i � Dun

j in (25) can be written as
Dun
i � Dun

j ¼
1
2
ðDun

i Þ
2 þ ðDun

j Þ
2

h i
� 1

2
Dun

i � Dun
j

h i2
: ð35Þ
Substituting this relation into (25), using mij = mji, and (7) and (13) instead of (12) for the lumped mass matrix approxima-
tion, we find
Knþ1
p � Kn

p ¼
XN

i¼1

un
i þ

1
2

Dun
i

� �
miDun

i � D; ð36Þ
where
D ¼ 1
4

XN

i¼1

XN

j¼1

mn
ij Dun

i � Dun
j

h i2
¼ O½ðDxÞ2dðDtÞ2�P 0; ð37Þ
because the velocity increments, / Dt, between neighboring nodes differ by O[(Dx)d], and mij P 0.
Using (19) with mij = midij, and (28) and (31), we find
Knþ1
p þ Unþ1

p ¼ Kn
p þ Un

p þ
XNp

p¼1

mpbp � unþ1=2
p Dt � Dþ O½ðDtÞ2�: ð38Þ
Comparing this relation to (32) there is an extra term D resulting only from the approximation of lumping the mass matrix.
This term causes a numerical energy dissipation of order (Dx)2d(Dt)2. This error is smaller than the error of O[(Dt)2] caused
by time discretization for sufficiently fine meshes.

5. Time scales affected by distribution coefficients

In the previous section we show that to ensure momentum conservation, the distribution coefficients have to satisfy (23).
To ensure energy conservation the velocities used to compute the strain rate and then the stress need to be weighted by the
distribution coefficient, while the velocities used to advance positions of the material points should not be weighted. In this
section, we use a simple example to study the effects of these coefficients on the time scales in the system, and then to find a
way to specify the coefficients.

We consider an one-dimensional elastic problem with only one computational cell and one material point. The compu-
tational cell has two nodes. Node 0 is located at x = 0 and node 1 is located at Dx. In this cell the material point, with mass mp,
is located at xp. This problem can be thought of as a situation encountered in the motion of an elastic bar when the material
point at the end of the bar enters a new cell. Suppose that elastic bar loses most of its translation momentum and oscillates in
this position with a small amplitude. As in most implementations of the material point method, we use a lumped mass
matrix in this problem. We further assume the velocity at node 0 is zero.

Let E be the Young’s modulus of the elastic bar, and k1 be the displacement of the material on node 1 relative to that on
node 0. In this one-dimensional example, the ‘‘volume” of the material point vp = Dx. The mass of the material point is
mp = q0D x. The shape function of node 1 is S(x) = x/Dx, and the mass on node 1 is m1 = mpS(xp) = q0xp. With the original mate-
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rial point method, the strain is calculated as e = k1/Dx, and the stress at the material point is rp = Ek1/Dx. Without external
forces, using (19) with the lumped mass matrix approximation, we have C10 = 0 and C11 = 1 for the original material point
method. The momentum equation for node 1 becomes
m1
d2k1

dt2 ¼ �
E
Dx

k1: ð39Þ
In this equation the mass m1 is a function of the material point position xp, which is a function of time. For small amplitude
motions, we can neglect such time dependency of m1 and solve the equation. The solution has a time period of
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1Dx=E

p
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0xpDx=E

p
. If xp is very small, the time period is also small. A small time step is needed to perform the

numerical calculation to prevent a numerical instability. Often the time step is impractically small, and the calculation fails
to progress.

With the algorithm for small mass nodes introduced in the present paper, when m1 is smaller than a mass m�, the strain
rate is calculated as C11dk1/dt. Neglecting the small position change of the material point, the strain can be calculated as
C11k1/Dx, and then stress is rp = C11Ek1/Dx. Noting C01 = 0 in this case, the momentum equation for node 1 becomes
m1
d2k1

dt2 ¼ �C2
11

E
Dx

k1; ð40Þ
and the time period of the solution becomes 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1Dx=ðC2

11EÞ
q

. If we choose C11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=mp

p
, then the time period becomes

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpDx=E

p
¼ 2pDx=c, where c is the sound speed. For this time period, the corresponding wave length is 2pDx. This is in

agreement with the minimum wave length that can be solved reliably using mesh size of Dx in a mesh based calculation. The
time step required to solve this case is then independent of the position of the material point. This simple example implies
that to preserve reasonable time steps in solving a momentum equation, the force distribution coefficient C‘‘ should be pro-
portional to

ffiffiffiffiffiffi
m‘

p
.

For this reason, in solving the momentum equation, we distribute the force on a small mass node to surrounding nodes
proportionally to the square root of the mass at a recipient node. That is
C‘ i ¼
ffiffiffiffiffiffi
mi
pP
ðj;‘Þ

ffiffiffiffiffiffi
mj
p ; ð41Þ
where
P
ðj;‘Þ denotes the summation over node ‘ and its neighbors. These coefficients satisfy (23).

A similar approach can be used to prevent numerical instabilities caused by small thermal capacities at nodes. The cor-
responding distribution coefficients for thermal flux can also be derived in a similar manner.

6. Coupling material interactions

Since the material point method is computationally more expensive than a typical arbitrary Lagrangian Eulerian method,
it is often preferred to use the ALE method for fluid phases, and only use MPM for solid phases, or for phases with history
dependent constitutive relations. A method enabling such use of coupled ALE and MPM calculation is described in [2]. In
order to correctly calculate material interactions, the algorithm described above needs to be incorporated with schemes
for handling time scales from exchange forces between phases, and a method for satisfying the continuity requirement.
The mathematical foundation of the method is described in our previous paper [2]. In that paper we also outlined the steps
of the numerical implementation for the method for satisfying the continuity requirement. To couple the method with the
present algorithm, we need to make several subtle but important modifications to the implementation. We now describe our
new implementation.

In each time step, advancement of the velocities for all the phases uses a prediction and correction method, and is divided
into four major steps. We now describe each of them in the following subsections.

6.1. Stress acceleration

In the first step, we only consider the effects of r � [hk(rk + PI)] and the body force term on the right hand side of (1). In
this step, for a phase calculated using the ALE method, the Lagrangian velocity is first updated in the typical ALE fashion [12].
For phases calculated using the material point method, we use a lumped mass matrix. The Lagrangian velocity is first cal-
culated using (19), with mij = midij and Gj = bkj, the specific body force for the phase k material at node j.

The velocities calculated in the first step do not account for the pressure gradient. More importantly, the velocities so
obtained do not usually satisfy the continuity constraint, which is often expressed as requiring that the sum of the updated
volume fractions equals unity in the multiphase system. Therefore these velocities need to be corrected.

6.2. Continuity requirement and pressure acceleration

The volume fraction hk of phase k is calculated as hk ¼ qk=q0
k , where qk is the macroscopic density, and q0

k is the material
density. The macroscopic density satisfies the mass conservation equation [3]
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@qk

@t
þr � ðukqkÞ ¼ q0

kc
_/k; ð42Þ
where _/k represents rate of volume gain due to phase changes and q0
kc is the material density of the material gained or lost

due to phase change. The material density satisfies the evolution equation [3]
hk
@q0

k

@t
þ uk � rq0

k

� �
¼ �hkq0

khr � uki þ ðq0
kc � q0

kÞ _/k; ð43Þ
with
hr � uki ¼ akr � uk þ Bk; ð44Þ
where 0 6 ak 6 1 is related to the morphology of the phase [3]. In (44), the first term, akr � uk, is directly related to the mac-
roscopic motions of the material; the second term Bk represents interaction of materials. For modeling material interactions
[3], we require that the rate of pressure change caused by Bk is the same in all phases.

The first term in (44) can be easily calculated. The following procedures are taken to calculate Bk. We first advance the
macroscopic density qk at a node using (42) for all phases through advection operations. For a phase represented by material
points, such calculated macroscopic density is used to compute the material strain, strain rate and the pressure, or the neg-
ative of the isotropic component of the stress tensor; therefore, as discussed in Section 4, the velocity field used in this advec-
tion should be the velocity weighted by the force distribution coefficients as defined in (29) to ensure total energy
conservation within an error of order (Dt)2. Such weighted node velocities are first used to calculate the face velocities on
a control volume, and then to calculate the divergence of the mass flux qkuk, which is used to update the macroscopic density
qk on a node. For a phase represented by material points, this velocity and the macroscopic density are only used in this step;
they are eventually overwritten at the end of the time step as described in Section 6.4. Since distribution coefficients are only
used for phases represented by material points, for a phase calculated using the ALE method, distribution coefficients and
hence the weighted velocity are not defined. For these phases the usual velocity field is used in the advection.

To update the microscopic density q0
k on a mesh node, we first calculate an interim material density q0�

k using (43). In
this calculation, hr � uki in (43) is calculated without Bk in (44). The term uk � rq0

k is calculated as r � ðq0
kukÞ � q0

kr � uk

with the divergences calculated in the typical manner of a finite volume method, namely, as the sum of the fluxes out
of the surfaces of the control volume divided by the volume of the control volume. We also calculate a pressure P�k, defined
as the negative of the isotropic component of the stress tensor, corresponding to the interim density q0�

k through the equa-
tion of state or the constitutive relations of the material. In these calculations, again, the velocity is the distribution coef-
ficient weighted velocity for the phases represented by material points, and is the usual velocity for phases using the ALE
method.

With the calculated macroscopic density and the interim material density, an interim volume fraction h�k ¼ qk=q0�
k for

phase k can be calculated. Such calculated volume fractions do not, in general, satisfy the continuity condition. To enforce
the continuity condition, we then change pressures in all the phases by the same amount DP. This pressure change leads
to changes in the material densities and the volume fractions of all the phases. It can be shown [3] that this density change
q0L

k � q0�
k ¼ �q0�

k BkDt, as called for in (44). As described in [2], because of unavoidable numerical errors related to the volume
fraction calculation in the material point method, continuity condition

PM
k¼1hk ¼ 1 should not be enforced directly to avoid

undesired accumulation of numerical errors. To correctly enforce the continuity condition in the material point method the
following equation is used to solve for the common pressure change DP.
XM

k¼1

qk

q0
kðp�k þ DPÞ

	 

�
XM

k¼1

hn
k þ um � r

XM

k¼1

hkDt ¼ 0; ð45Þ
where M is the total number of phases or materials in the system, superscript n denotes the value at the beginning of the
time step, and um is the mixture velocity. In the sense of a weak solution, this equation is equivalent [2] to

PM
k¼1hk ¼ 1. In

solving (45), because of numerical errors, the condition
PM

k¼1hk ¼ 1 should not be assumed, and the mixture velocity um

should be calculated as
um ¼
XM

k¼1

hkuk=
XM

k¼1

hk; ð46Þ
to prevent undesired accumulation of numerical error [2].
For a time explicit scheme, in solving for DP from (45), the macroscopic density qk is not a function of DP, and the equa-

tion can be solved in pointwise manner without the need for information from the neighbor nodes. For a time implicit
scheme, the macroscopic density qk is related to the pressure gradient, therefore information from neighbor nodes is needed.

In this way of enforcing the continuity constraint, we have calculated the updated pressure Pk ¼ p�k þ DP and the Lagrang-
ian material density q0L

k ¼ q0
kðp�k þ DPÞ, for all the phases, on mesh nodes. Since the auxiliary pressure P in (1) is the pressure

of one of the phases in the system, the pressure gradientrP in (1) can be calculated. By adding �rPDt=q0
k to the Lagrangian

velocity obtained in Section 6.1, we account for the effect of this pressure gradient. This updated Lagrangian velocity,
denoted as uð2Þk , satisfies
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hkq0
k

uð2Þk � un
k

Dt
¼ r � hk rn

k þ PnI
� �� �

þ hkq0
kbk � hkrP; ð47Þ
where superscript n denotes the value of the last time step, which is also the value at the beginning of this time step. The
effects of the first two terms on the right hand side are accounted for in Section 6.1. Pressures Pn and P are different by O(Dt),
which can be neglected. The algorithm described here takes the advantage of the form of the momentum equation (1). As
mentioned in Section 2, if the pressure effect were written as Prhk, we would have caused an acceleration
ðP � PnÞrhk=ðhkq0

kÞ due to the gradient in the volume fraction, even in an equilibrium system, in which all the deviatoric
stresses are zero, and the pressures for all phases are the same and uniform in space. Although the acceleration is small,
O(Dt), it is unphysical. In the form of (1) and the implementation described in the present paper, the stress rk and the pres-
sure are calculated at the same time. When the system is at equilibrium, all the stresses equal �PnI, and the first term on the
right hand sides of (1) and (47) vanishes exactly. GivenrP = 0, without the body force, the velocity change uð2Þk � un

k is exactly
zero.

6.3. Accounting for phase interaction force

Comparing (47) with (1), the phase interaction force fk is missing from (47). To add the effect of this force, we approxi-
mate duk/dt in (1) by ðuL

k � un
kÞ=Dt, and subtract (47) from the resulting equation, to find
q0
k uL

k � uð2Þk

� �
¼ f kðuL;unÞDt: ð48Þ
The phase interaction force fk is a function of the Lagrangian velocities of all phases in the system, denoted by uL, and the
velocities un at the beginning of the time step. This equation is a coupled system among all phases in the calculation, but
it is a pointwise equation, and does not involve quantities on neighbor nodes. The final Lagrangian velocity uL

k is solved from
(48).

6.4. Time step completion

After these three steps, we have the Lagrangian velocities on the nodes. These velocities are used in (10) and (11) to
advance the velocities and positions of the material points. To advance the stress on material points, we calculate the veloc-
ity gradient at the location of the material point using (28). The velocity used in this calculation is obtained from the force
distribution coefficient weighted Lagrangian velocities around the nodes according to (29). Since such calculated stress is
used in the next time step, to prevent time lag in the stress, as explained in Section 4, we replace ûn

k by ûL
k in (28). Before

this velocity gradient is used to update the stress tensor, it is modified by subtracting lnðq0L
k =q0�

k Þ=DtI ¼ �BkI þ OðDtÞ from
it to account for the effect of Bk in (44).

For the phases represented by the material points, the time-advanced quantities, such as the velocity unþ1
k , the material

density q0 nþ1
k , and the macroscopic density qnþ1

k ¼ hnþ1
k q0 nþ1

k , stored on the mesh nodes are overwritten using the quantities
at material points through relations (13), (15) and (16) with shape functions calculated at the time-advanced positions for
the material points. For the phases calculated using the ALE method, advection is then performed to remap the Lagrangian
quantities to nodes [12].
7. Numerical examples

The numerical procedures described in Section 6 have been implemented in the code CartaBlanca. In this section we pres-
ent five examples obtained with the code to illustrate the usefulness of the distribution coefficient algorithm for small mass
nodes.

The first example considers one-dimensional translation of four material points in air. The material points represent a
porous elastic body with material density q0 = 2.0 g/cm3, Young’s modulus E = 10 GPa and volume fraction 0.5. The compu-
tational domain consists of ten cells with Dx = 0.1 cm in an interval 0 6 x 6 1. Four material points are initially placed in the
5th and 6th cells at positions xp = 0.425, 0.475, 0.525, 0.575. In these cells air fills the volume left by the solid to ensure the
sum of the volume fractions of the solid and air is unity. The initial velocity of both materials is 10 m/s. Initial pressures of the
solid material and the air are set to be one atmosphere. There is no initial deviatoric stress on the solid. On the left boundary
of the computational domain, we specify densities of both materials corresponding to their values at one atmosphere. On this
boundary a constant inflow velocity of 10 m/s is specified for both materials. On the right boundary we specify a constant
pressure of one atmosphere. The sound speed in the solid is c ¼

ffiffiffiffiffiffiffiffiffiffiffi
E=q0

p
¼ 2:24 km=s. We turn on the algorithm for small

mass nodes when the node mass is less then 4% of the largest mass of neighbor nodes, corresponding to an
80% ¼ 1�

ffiffiffiffiffiffiffi
4%
p� �

reduction of time step based on the largest mass node. If we allow the Courant number to be one, the
maximum allowed time step is Dt = 0.2Dx/c = 8.93 � 10�8 s. In this calculation, Dt = 8.92 � 10�8 s is used. As expected,
the results show pressure of the air, the stress in the solid and the velocities of both phases remain constant throughout
the calculation of 5000 time steps. At the end of the calculation three material points translated to positions xp = 0.871,
0.921, 0.971, and the fourth material point, originally at xp = 0.575, left the computational domain. To ensure the calculation
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is indeed stable within the range of time steps allowed by the Courant limitation, we decreased the time step by a factor of
ten to Dt = 8.92 � 10�9 s and increased the number of time steps to 50000. The results are the same. In both cases, no sign of
instability is observed. In contrast to these results, we also performed a calculation without the distribution coefficient algo-
rithm. The calculation lost its stability when Dt = 1.5 � 10�8 s was used.

The second example calculates vibration of a one-dimensional bar in air. In this example both the solid material and air
have the same properties as described in the first example. The region containing the solid bar contains 1% air. The solid bar
is fixed at the left end, and the right end is free. The computational domain ranges from x = 0 to x = 1 cm, and is divided into
80 cells with Dx = 0.0125 cm. There are 81 material points representing the solid material. The material points are located at
positions xp = (3/500 + np/2)Dx, np = 0, . . . ,80. In this distribution of material points, the last material point is located at
xp = 0.500075 cm, slightly beyond node 41 at 0.5 cm as shown in Fig. 1. The mass at node 42 is 7.43 � 10�5 g, a small number
compared to the mass of node 41 (0.0186 g). As an initial condition, linear initial velocity of the solid material is set as
ux = 100x cm/s. The subsequent velocity is governed by the wave equation.

Fig. 2 shows the displacement of the last material point (originally at xp = 0.500075 cm) calculated with and without the
distribution coefficient algorithm for small mass nodes. The solid line is the analytical solution from the wave equation. Hol-
low squares are results calculated without the distribution coefficient algorithm using time step Dt = 3.0 � 10�9 s. The line
with hollow circles shows the results without the algorithm calculated using a slightly larger time step, Dt = 3.2 � 10�9 s. For
this time step size, the calculation loses its stability near the trough of the wave as shown in the figure. At the trough, the last
material point moves closer to node 41; the mass at node 42 is further reduced. According to our analysis in Section 5, the
required time step is also reduced. Although in this explicit calculation, the time step is limited to be less than Courant num-
ber 0.75 based on both the elastic wave speed and the material speed, the calculation still loses its stability in this case. With
the distribution coefficient algorithm for small mass nodes described in the present paper, we are able to calculate this vibra-
tion problem with time step Dt = 3.0 � 10�8 s, with corresponding Courant number 0.5, about ten times the time step
required without the algorithm. The difference between results obtained with this algorithm and the analytical solution
is almost invisible in the figure. The fact that the amplitude of the oscillation does not decay suggests conservation of energy
in the calculation.

This example was set up to show the necessity of the algorithm for small mass nodes. If the sole purpose is to solve the
physical problem described here, the initial material points can be better distributed to avoid the numerical instability.
However, often in a numerical calculation, especially for cases of large deformation, the locations of the material points
38 39 40 41 42 43

Fig. 1. A schematic illustration of the mesh and material points near the material interface in the one-dimensional vibration example.
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Fig. 2. Comparison of displacements of a vibrating one-dimensional elastic bar calculated with and without the distribution coefficient algorithm (DCA) for
small mass nodes.



Fig. 3. An illustration of projectile-target interaction calculated with the material point method. Material points are colored by hoop stress.
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are part of the solution. There is no way to ensure they all will remain in positions that do not cause instability. Without an
algorithm for small mass nodes, numerical instabilities will occur sooner or later.

Indeed, this is what happens in the following third example. Here, we calculate interaction of a tungsten projectile and a
cylinder of armor steel, as illustrated in Fig. 3. We have studied this interaction previously [2] to demonstrate the algorithms
for enforcing the continuity constraint in multimaterial interactions. The calculation was done with small time step sizes.
This is one of the few relevant cases for which there are available experimental data. In the present paper we calculate it
again to compare the results obtained with and without the algorithm for small mass nodes.

This calculation involves three phases, air, tungsten and armor steel. Of course air has little effect in this process. We
choose to include it to demonstrate the capability of handling large material density ratios using the material point method
coupled with the arbitrary Lagrangian Eulerian method. In this example the tungsten rod is 5 cm in length and is shot into an
armor steel block of 4.95 cm thickness. The initial speed of the tungsten rod is 1.7 km/s. Fig. 4 shows the results calculated
with and without the algorithm for small mass nodes. The results are almost indistinguishable for the tail positions. For the
nose positions, the differences are slightly more visible. This is because the interactions on the interface between the pro-
jectile material and the target material on the nose are more important than the interface interactions between the projectile
material and air on the tail. Although there is little difference in the results, the computation time is very different. With the
algorithm for small mass nodes the entire calculation can be completed (to 70 ls) within 25 min on a Dell Inspiron laptop
with a 2.16 GHz Intel chip. Without the algorithm for small mass nodes to achieve numerical stability, we have to limit the
time step at Dt = 10�9 s, and took 6 h and 40 min to run to physical time of about 66 ls. The calculation could not reach the
intended 70 ls because the time steps were reduced to 10�20 s. This behavior of the numerical solution is in agreement with
our analysis above: the algorithm for small mass nodes does not increase the accuracy of the numerical solution but greatly
enhances stability of the calculation. Therefore larger time steps can be used to reduce total computation time.

As mentioned in Section 3, the distribution coefficient algorithm introduced in the current paper makes approximations
of O(Dx) on accelerations at nodes near nodes with small masses. These nodes are often near the material boundaries or
interfaces. To ensure the algorithm produces accurate results in cases with large ratio of boundary nodes to internal nodes,
we now consider the vibration of a thin elastic spherical shell with inner radius 3.9 cm and outer radius 4.0 cm. In this exam-
ple, the material density q is 2.7 g/cm3. The Young’s modulus of the material is E = 70.38 GPa, and the Poisson’s ratio is
m = 0.275. In this calculation we use cylindrical coordinates. The computational domain is a larger spherical shell containing
the elastic shell, with 40 cells in the radial direction and 40 cells in the zenith direction. Initially, the elastic material only
occupies four middle layers of the cells along the radial direction as shown in Fig. 5. Other cells are initially empty. In this
way we have plenty of room for possible large material deformation. The elastic shell is set into vibration by imposing an
initial outward velocity of 50 m/s. The theoretical value of the period of vibration is 29.27 ls as calculated [13] using
pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=lÞð1� mÞ=ð1þ mÞ

p
, where a = 3.95 cm is the radius of the middle plane of the shell and l = E/[2(1 + m)] is the shear

modulus. We numerically calculate this example with and without the distribution coefficient algorithm. At time step
Dt = 0.01 ls the calculation using the distribution coefficient algorithm yields the period of vibration 29.28 ls; while the cal-
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culation without the distribution coefficient algorithm lost its stability. When the time step is reduced to Dt = 0.001 ls, both
methods produce the same result 29.28 ls. The values of the kinetic energy and the total mechanical energy are plotted in
Fig. 6 as functions of time for the calculations using Dt = 0.001 ls. Both methods are dissipative. In this example, the calcu-
lation with the distribution coefficient algorithm is slightly more dissipative than the original material point method. How-
ever, this is not a general trend. As an additional test to the distribution coefficient algorithm, we calculate the radial
vibration of a circular copper disk under plane strain as in [6,9], the original material point method is slightly more dissipa-
tive than the method with the distribution coefficient algorithm. In these calculations, the copper disk is the same size
(0.6 cm in radius ) as in [6,9]. The symmetry condition is used. The computational domain is a 1 � 2 cm rectangle divided
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into 20 � 40 square cells in the x and y directions respectively, and contains half of the disk. In both cases, the calculated
period for the radial vibration is the same as the theoretical value 2.63 ls ([6,9]).

8. Conclusions

For cases with large deformation of materials, the distribution of material points often causes small masses on nodes near
material interfaces. Such a small mass node not only leads to tiny time steps, but also often results in instability and failure of
numerical simulations. A numerical algorithm for these small mass nodes is introduced in the present paper.

This algorithm distributes the force on small mass nodes to surrounding nodes. The amount of the force distributed is
proportional to the square root of the mass at the recipient node. This algorithm is shown to exactly satisfy mass and
momentum conservation laws. The energy conservation error is proportional to the square of the time step, as in the original
material point methods.

Numerical examples show this numerical algorithm is very effective and can significantly increase the allowed size of the
time steps, therefore significantly reducing total computation time. The introduced algorithm is a numerical scheme to pre-
vent numerical instability; it does not increase or reduce the accuracy of the numerical solution.

In the present paper we derived the algorithm for the momentum equations. Similar stability issues appear in solving
energy equations on nodes with small thermal capacities. A similar approach can be used to enhance the numerical stability
in those calculations.
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